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Abstract

Given the complexity of modern cosmological parameter inference where
we are faced with non-Gaussian data and noise, correlated systematics and
multi-probe correlated data sets, the Approximate Bayesian Computation
(ABC) method is a promising alternative to traditional Markov Chain Monte
Carlo approaches in the case where the Likelihood is intractable or unknown.
The ABC method is called “Likelihood free” as it avoids explicit evaluation
of the Likelihood by using a forward model simulation of the data which can
include systematics. We introduce astroABC, an open source ABC Sequen-
tial Monte Carlo (SMC) sampler for parameter estimation. A key challenge
in astrophysics is the efficient use of large multi-probe datasets to constrain
high dimensional, possibly correlated parameter spaces. With this in mind
astroABC allows for massive parallelization using MPI, a framework that
handles spawning of processes across multiple nodes. A key new feature
of astroABC is the ability to create MPI groups with different communi-
cators, one for the sampler and several others for the forward model sim-
ulation, which speeds up sampling time considerably. For smaller jobs the
Python multiprocessing option is also available. Other key features of this
new sampler include: a Sequential Monte Carlo sampler; a method for itera-
tively adapting tolerance levels; local covariance estimate using scikit-learn’s
KDTree; modules for specifying optimal covariance matrix for a component-
wise or multivariate normal perturbation kernel and a weighted covariance
metric; restart files output frequently so an interrupted sampling run can
be resumed at any iteration; output and restart files are backed up every
iteration; user defined distance metric and simulation methods; a module
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for specifying heterogeneous parameter priors including non-standard prior
PDFs; a module for specifying a constant, linear, log or exponential tol-
erance level; well-documented examples and sample scripts. This code is
hosted online at https://github.com/EliseJ/astroABC

1. Introduction

Given the size and complexity of modern cosmological data, Bayesian
methods are now standard analysis procedures. Bayesian inference allows
us to efficiently combine datasets from different probes, to update or incor-
porate prior information into parameter inference and to carry out model
selection or comparison with Bayesian Evidence. Cosmology is the latest dis-
cipline to embrace Approximate Bayesian methods, a development driven
by both the complexity of the data and covariance matrix estimation, to-
gether with the availability of new algorithms for running fast simulations of
mock astronomical datasets [26, 4, 15]. ABC and so called “Likelihood free”
Markov chain Monte Carlo (MCMC) techniques are popular methods for
tackling parameter inference in scenarios where the Likelihood (probability
of the data given the parameters) is intractable or unknown [see e.g. 24].
These methods are called “Likelihood free” as they avoid explicit evalua-
tion of the Likelihood by using a forward model simulation of the data. In
Likelihood free MCMC techniques the acceptance probability is computed
using a metric between the data and the simulation of the data without
using a likelihood function. ABC methods aim to simulate samples from
the parameter posterior distribution (probability of the parameters given
the data) directly. In MCMC approaches the target distribution is the pos-
terior probability distribution function (pdf) of interest. In practice our
estimate of this pdf is approximate due to finite sampling time, resulting
in a correlated chain which we hope has converged. ABC methods are also
approximate in the sense that samples are generated from trial distributions
which we hope are close to the real posterior of interest. In this paper we
present astroABC, a new open source Python ABC Sequential Monte Carlo
sampler which allows for massive parallelization using MPI.

The standard in cosmological parameter estimation is to adopt a Bayesian
approach, where a Likelihood function, together with a prior pdf for the pa-
rameters of interest, are sampled over using an MCMC to simulate from the
posterior distribution. There are many public parameter estimation codes
available to the astrophysics community which focus on MCMC methods for
analyzing complex cosmological datasets, as well as calculating the physical
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analytical models and covariances which are needed in the Likelihood [e.g.
14, 7, 27]. Looking to the future of cosmological parameter inference, most
of the statistical constraining power will come from combining datasets from
multiple different probes [25, 7, 19]. Evaluating the Likelihood for combined
probes is a non-trivial task as complex physical data is unlikely to have a
simple multi-Gaussian or analytical form. Accounting for modeling and in-
strumental systematics, and significant correlations between the parameters
of interest and nuisance parameters in either the covariance matrix or Like-
lihood can be a daunting task [6, 18]. ABC replaces the calculation of the
Likelihood function with a simulation that produces a mock data set which
can be compared to the observed data. ABC methods are a promising alter-
native as a forward simulated model for the data includes systematics and
correlations self consistently.

There are several implementations of ABC methods already available in
the R1 language, available as packages from CRAN e.g easyabc 2 and abc
[5]; as well as Python packages e.g abcpmc [1] and cosmoabc [11]. astroABC
has several innovative new factors which make this software of value to the
astrophysics community.

A key advancement in astroABC is the facility for massive paralleliza-
tion using MPI, a framework that handles spawning of jobs across multiple
nodes and provides a mechanism for communication between the processors.
Allowing for MPI communication is a crucial speed enhancement which, to
our knowledge, is not available in any of the Python abc packages currently
in use in astronomy. For smaller jobs the Python multiprocessing option is
also available which can spawn multiple processes but which are still bound
within a single node. Other innovative factors include: several end user op-
tions are available to specify how the covariance, kernel and tolerance levels
are calculated for the particles; different priors (as well as non-standard prior
distributions) can be specified for each parameter; restart files are written
every iteration to allow for e.g. interrupted sampling runs or time limits on
batch queue systems; output and restart files are backed up every iteration.
As many in the astrophysics community are not familiar with the statistics
package R, astroABC is available as a set of Python modules which are well
documented and easily modified if necessary in a specific application. In ad-
dition astroABC will be made available independently on github and as part
of the CosmoSIS parameter estimation code [27]. astroABC is packaged for

1https://www.r-project.org/
2http://easyabc.r-forge.r-project.org/
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distribution using PYPI3; is publicly available on github4 and synced with
Travis continuous integration 5 for testing new builds or commits. It is well
documented with class/method doc strings as well as tutorial and example
pages hosted on the github wiki.

2. Bayesian Analysis and Markov Chain Monte Carlo

In this section we give a brief background on Bayesian inference and
traditional MCMC methods which will be useful when comparing with Ap-
proximate Bayesian Computation.

2.1. Bayesian Inference

The fundamental problem in Bayesian statistics is the computation of
posterior distributions. We are interested in estimating the posterior pdf
for some underlying parameters, θ of a model, M , given some data and
prior information about those parameters. Bayes’s Theorem allows us to
write this posterior distribution in terms of the Likelihood for the data,
L(D|M(θ)), and the prior distribution, π(θ), as

P (θ|D) =
L(D|M(θ))π(θ)∫
L(D|M(θ))π(θ)dθ

(1)

where the denominator is referred to as the Bayesian Evidence or marginal
Likelihood; and the integral runs over all possible parameter values. The
prior probability represents our state of knowledge of the data and may
incorporate results from previous datasets; restrict the range for physical
parameters e.g. masses must be positive; or may be un-informative with
little restriction. The choice of Likelihood for many cosmological analysis is
a single or multivariate Gaussian where the mean is evaluated using some
physical model and the covariance matrix is measured or estimated either
analytically or numerically. In this framework the accuracy of the parame-
ter estimation will depend heavily on our choice for the Likelihood, as well
as the accuracy of the physical model for the data, and how well param-
eter covariance and correlated systematics are described in the covariance
matrix [see e.g. 27, 7]. For a review of probability, parameter inference and
numerical techniques such as MCMC methods please see e.g. [23, 10, 12].

3https://pypi.python.org/pypi
4https://github.com/EliseJ/astroABC
5https://travis-ci.org/

4



2.2. Markov Chain Monte Carlo techniques

MCMC techniques are an efficient way to simulate from the posterior pdf
when analytical solutions do not exist or are intractable. An MCMC algo-
rithm constructs a sequence of points in parameter space, referred to as an
MCMC chain, which is a discrete time stochastic process where each event
in the chain is generated from the Markov assumption that the probability
of the (i+ 1)th element in the chain only depends on the value of the ith ele-
ment. Markov Chains are called “memory-less” because of this assumption.
A key property of Markov chains is that under certain conditions the distri-
bution of the chain evolves to a stationary or target state independently of
its initial starting point. If our target distribution is the posterior pdf then
we want the unique limiting distribution for the Markov Chain to be simu-
lated draws from this posterior distribution. Many MCMC algorithms exist,
including the Metropolis-Hastings algorithm [17], Gibbs sampling, Hamil-
tonian Monte Carlo, importance sampling and ensemble sampling [see e.g.
9]. Each method relies on a proposal distribution (which may have separate
parameters which need to be tuned) to advance events in the chain from the
starting distribution towards the target pdf. Once the chain has converged
the density of points in the chain is proportional to the posterior pdf. If the
Likelihood and model are correct then MCMC will lead to a posterior pdf
that converges to a common inference on the model parameters.

3. Approximate Bayesian Computation

In Section 3.1 we describe ABC and motivate its use for cosmological
parameter estimation, in Section 3.2 we describe a general ABC Sequential
Monte Carlo algorithm and in Section 3.3 we discuss the ABC distance
metric and sufficiency conditions on summary statistics.

3.1. ABC: parameter inference without Likelihood assumptions

In traditional MCMC approaches the Likelihood used (most often a sim-
ple multi-Gaussian) is a key assumption in the method. With incomplete
analytical expressions for the Likelihood or computational restrictions on
how accurately we can estimate the covariance matrix, this assumed pdf
will be incorrect, leading to biased parameter constraints. For example in
supernova analysis studies, it is well known that selection effects (e.g mag-
nitude or color cuts) imposed on the data sample are not easily accounted
for analytically in the Likelihood and can lead to biased population param-
eters from MCMC sampling; or in analyzing the number counts of clusters
of galaxies, analytical models in the Likelihood are often calibrated using a
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particular definition of a cluster which may not be applicable for the data,
or using an N-body simulation in a fixed cosmological model. ABC methods
aim to simulate samples directly from the parameter posterior distribution
of interest without assuming a particular form for the Likelihood.

3.2. ABC algorithms

The simplest ABC algorithm is rejection sampling. Given a set of pa-
rameters, θ, with associated priors, π(θ) and a forward simulated model for
the data, π(D|θ), we can simulate from the posterior distribution, P (θ|D),
by first drawing sample parameters θ∗ ∼ π(θ), then simulating a dataset
with these parameters D∗ ∼ π(D|θ∗). In a rejection sampling algorithm,
we reject D∗ unless it matches the true data, D. For a discrete data set,
which is a single random realization from a continuous pdf, this algorithm
would not be practical as many simulated samples would be rejected until
an exact match is found. In practice we make an approximation and accept
simulated datasets which are “close” to the true data. This notion of sim-
ulating a mock dataset which is close to the observed data introduces the
ideas of a distance metric and tolerance level in ABC. We accept proposed
parameters θ∗, if ρ(D∗−D) < ε where ρ is the distance metric, which could
be e.g. the Euclidean norm ||D∗ −D||, and ε is a tolerance threshold. This
procedure produces samples from the pdf P (θ|ρ(D∗ − D) < ε), which will
be a good approximation of the true posterior if ε is small.

Rather than drawing candidates θ∗, one at a time, we can speed up the
ABC algorithm by working with large pools of candidates, called particles,
simultaneously. At each stage of the algorithm the particles are perturbed
and filtered using the distance metric, and eventually this pool of particles
move closer and closer to simulating from the desired posterior distribution.
This approach is known as Sequential Monte Carlo or Particle Monte Carlo
sampling and the algorithm is presented in Algorithm 1 [see e.g. 2, 22, 21].

Different ABC SMC algorithms can be distinguished by how sampling
weights are assigned to the particles in the pool. In order to filter and per-
turb the particles we need a transition kernel. The transition kernel serves
the same purpose as the proposal distribution in a standard MCMC algo-
rithm. The transition kernel specifies the distribution of a random variable
that will be added to each particle to move it around in the parameter
space. At iteration t, the ABC SMC algorithm proposes parameters from
the following

qtθ =

{
π(θ), if t = 0∑N

j=1wj,t−1K(θj,t−1|θi,t,Σt−1), otherwise
(2)
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where wj,t−1 are the weights for particle j at iteration t − 1 and Σt−1

is the covariance amongst the particles at t − 1. This effectively filters out
a particle from the previous weighted pool, then perturbs the result using
the kernel K. The weighting scheme in ABC SMC minimizes the Kull-
back – Leibler distance, a measure of the discrepancy between two density
functions. Minimizing the Kullback – Leibler distance, between the desired
posterior and the proposal distribution, maximizes the acceptance probabil-
ity in the algorithm [8]. For more details on the different choices of kernel
as well as optimization techniques see e.g.[2, 8]. We list the kernel options
available in astroABC in Section 4.2. In Algorithm 1 the ABC sampler is
run for a maximum of T iterations. In astroABC the sampler runs until
T iterations has been achieved or until the minimum threshold specified is
found. Both the maximum number of iterations and the minimum threshold
are user defined options and will depend on the required accuracy needed
for the distance metric.

3.3. The ABC metric and sufficient statistics

Using high-dimensional data can reduce the acceptance rate and reduce
the efficiency of the ABC algorithm. In many cases it may be simpler to
work with some lower dimension summary statistic of the data, S(D), e.g.
the sample mean, rather then the full dataset [16]. In this case the chosen
statistic needs to be a so-called sufficient statistic in that any information
about the parameter of interest which is contained in the data, is also con-
tained in the summary statistic. More formally a statistic S(D) is sufficient
for θ, if the distribution P (D|S(D)) does not depend on θ. This requirement
ensures that in summarizing the data we have not thrown away constraining
information about θ.

The ABC method relies on some metric (a distance) to compare the
simulated data to the data that were observed. It is common to use the
weighted Euclidean distance,

ρ(S(D)− S(D∗)) =

(∑
i

(
S(D)i − S(D∗)i

σi

)2
)1/2

(3)

between the observed and simulated summary statistics as a metric, where
σi is the error on the ith summary statistic [see e.g. 3]. There are many
choices for the ABC distance metric, for example, the weighted sum of
absolute differences, or L1 distance,

∑
iwi|S(D)i − S(D∗)i|. Choosing a

summary statistic and distance metric which are sensitive to the parameters
of interest is a crucial step in parameter inference. The success of ABC
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Algorithm 1 ABC SMC algorithm for estimating the posterior distribution
for parameters θ using N particles, the prior distribution π(θ), given data D
and a model for simulating the data M(D|θ). θi,t represents the parameter
set for particle i and iteration t.

1: Set the tolerance thresholds, εt for t = 0 · · ·T iterations.
2: procedure ABC SMC LOOP
3: At iteration t=0:
4: for 1 ≤ i ≤ N do
5: while ρ(D,D∗) > ε0 do
6: Sample θ∗ from prior θ∗ ∼ π(θ)
7: Simulate mock data D∗ ∼ M(D|θ∗)
8: Calculate distance metric ρ(D,D∗)

9: Set θi,0 ← θ∗

10: Set weights wi,0 ← 1/N

11: Set covariance Σ2
0 ← 2Σ(θ1:N,0)

12: At iteration t > 0:
13: for 1 < t < T do
14: for 1 ≤ i ≤ N do
15: while ρ(D,D∗) > εt do
16: Sample θ∗ from previous iteration. θ∗ ∼ θ1:N,t−1 with

probabilities w1:N,t−1

17: Perturb θ∗ by sampling θ∗∗ ∼ N (θ∗,Σ2
t−1)

18: Simulate mock data D∗ ∼ M(D|θ∗∗)
19: Calculate distance metric ρ(D,D∗)

20: Set θi,t ← θ∗∗

21: Set weights wi,t ← π(θi,t)∑N
j=1 wj,t−1K(θj,t−1|θi,t,Σt−1)

using kernel K

22: Set covariance Σ2
t using e.g. twice weighted empirical covariance
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relies on the fact that if the distance metric is defined by way of sufficient
statistics, then the resulting approximation to the posterior will be good
as long as ρ(S(D) − S(D∗)) is less than some small threshold. There is
currently a lot of scope for research on practical methods for identifying
approximately sufficient statistics, and for assessing the adequacy of the
distance metric in astrophysical examples. We will discuss this further in
the example presented in Section 5.

4. astroABC

In Section 4.1 we discuss the open source code astroABC. There are
several options for choosing how the particle covariance in the perturbation
kernel are estimated and these are presented in Section 4.2. Further details
of runtime options are also given in Section 4.2.

4.1. The astroABC code

astroABC is an open source Python ABC SMC sampler which can be run
in parallel using MPI (with Python’s mpi4py6 package) or multithreading
(with Python’s multiprocessing package). The challenge in modern cosmo-
logical parameter inference is the efficient use of large multi-probe datasets
to constrain high dimensional correlated parameter spaces. In many cases
there are complicated systematics which effect our ability to extract the cos-
mological parameters of interest with the required accuracy. Currently the
approach has been to run computationally demanding simulations, which
naturally include systematic uncertainties and correlations, to estimate a
mean model and covariance matrix for use in MCMC sampling, after as-
suming some form for the likelihood. This approach can be flawed as the
number of simulations used can be insufficient to capture the full covari-
ance matrix or the simulations are run in a fixed cosmology, limiting the
usefulnesss of any estimates extracted. The ABC sampling method is an
alternative approach where a full forward model simulation, which includes
systematics and uncertainties, is run at every point in parameter space. The
simulation outputs from the ABC sampler vary with cosmology and are no
longer fixed to one cosmological model. Any correlations between parame-
ters are naturally included in the forward model simulation consistently at
every point in parameter space so there is no need to use a potentially inac-
curate covariance matrix in the distance metric. To estimate the covariance

6https://pypi.python.org/pypi/mpi4py
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matrix in current MCMC approaches it is common to run many simula-
tions on a user defined grid in parameter space which may be insufficient.
The ABC algorithm in astroABC has been optimized to efficiently estimate
the posterior distribution by running simulations only at select points in
parameter space.

The main limitation to the ABC method is computational speed, both for
running the accept/reject algorithm and the simulation. With this in mind
astroABC allows for massive parallelization using MPI. A crucial feature
is the ability to create MPI groups with separate communicators so that
astroABC runs on a single MPI pool of nodes, while each node in the pool
has access to a separate MPI group with which to launch a simulation. For
smaller jobs a multiprocessing (multithreaded) option is also available which
can spawn multiple processes but which are still bound within a single node.
This code has been designed with maximal flexibility in parameter inference
where the posterior pdf for multiple parameters is to be estimated.

In summary this code allows the user to:

• create MPI groups with separate communicators so both astroABC
and simulation launched by each particle can run in parallel

• run smaller jobs using Python’s multiprocessing

• assign different prior distributions to each parameter

• define the sufficient statistics and distance metric used in the sampling

• set at runtime one of a choice of tolerance thresholds, particle covari-
ance estimators and perturbation kernels

• frequently backup output files and restart files in case a job is canceled
due to time restrictions.

End users must supply a dataset (or summary statistic of the dataset), a
method for simulating the dataset (or the chosen summary statistic) and a
method for the calculating the distance metric given the summary statistics
of the data and simulation.

4.2. astroABC runtime options

The end user should provide a method which takes an input set of param-
eters and returns a simulated dataset (or summary statistic of the dataset)
for those parameters. In initializing the astroABC class a user can specify
the following:
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• the number of particles which will simultaneously generate samples
from the posterior distribution

• the number of iterations

• the number of parameters to vary in the sampling procedure

• the relevant priors for each parameter (together with the hyper param-
eters for each distribution) which is saved as a dictionary with callable
scipy.stats pdf functions for use in the sampling procedure.

• draw from any non-standard prior PDF which might be particularly
useful to cosmologists wanting to include priors from previous datasets
e.g. using results from the Planck chains [20]. This could be the
Markov chain samples or the output from any sampling method which
returns a finite set of parameter and probability values from the 1D
posterior distribution for that parameter.

In astroABC we implement an adaptive transition kernel which depends
on the covariance of accepted particles from the previous iteration [2]. For
particle i at iteration t, this is a Gaussian kernel with mean θi,t and a
covariance which can be either a component wise perturbation with local
diagonal variance or a multivariate perturbation based on the covariance,
depending on the end user’s selection. I.e. the end user can either use a
diagonal covariance matrix (neglecting correlations between parameters) or
the full matrix. The following options are available to calculate the entries
in the covariance matrix:

• twice the empirical covariance amongst the particles [see e.g 24]

• covariances which result in a kernel which minimizes the Kullback-
Leibler divergence between the target distribution and the distribution
of the perturbed particles

• local covariance estimate using scikit-learn’s KDTree method for near-
est neighbours [8]

• twice the weighted particle covariance matrix [2]

• a shrinkage covariance metric with the Ledoit-Wolf estimator [13].

The tolerance level in astroABC controls which of the proposed param-
eters are accepted given the distance metric. There are two considerations
in choosing a tolerance level. If the tolerance is too high then too many
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proposed parameters are accepted and the prior distribution dominates the
results e.g. if the tolerance level is infinity then we would just recover the
prior distribution from astroABC. If the tolerance level is too low then the
ABC accept/reject algorithm is very inefficient with many proposed points
being rejected. A compromise is to select a set of decreasing tolerance levels
where for the initial iterations we accept points in parameter space which do
not represent the data with high accuracy but as the algorithm progresses
the tolerance level decreases and the parameters are sampling a high prob-
ability region of the posterior distribution. Within the astroABC tolerance
class there are many options for selecting the tolerance type. Users can select
a linearly decreasing, log decreasing, exponentially decreasing, constant or
iteratively adaptive tolerance threshold. For the iteratively adaptive option
the user specifies a certain quantile e.g. 75th, of the metric distance from
the previous iteration. As such this decreasing tolerance depends on the
particle positions in the previous iteration. All tolerances require an input
maximum and minimum value and the selected tolerance type is then im-
plemented from a maximum value until either the minimum value is reached
or the particles have reached the maximum number of iterations requested.

5. MCMC vs ABC example

In this section we present a simple example of parameter inference, with
a simulated supernovae dataset, using both a standard MCMC sampler and
astroABC. This example represents a nontrivial case which has been specif-
ically chosen to highlight potential biases in the MCMC approach which
can be avoided using ABC. Note this is not meant to show the best con-
straints we can get from ABC versus MCMC using supernova data. The toy
example is meant to breakdown key elements and assumptions about the
two methods with a simple physical example and is intended as a teaching
exercise.

5.1. Example supernovae analysis

Using the 400 supernovae in the redshift range 0.5 < z < 1.0. The
‘true’ cosmological parameters for the mock data are Ωm = 0.3, the matter
density of the universe today, ΩΛ = 0.7, the dark energy density of the
universe today, w0 = −1.0, the present value of the dark energy equation of
state and h0 = 0.7, the current Hubble parameter.

For demonstration purposes we add artificial noise to the data at every
redshift by adding a random variable from a skewed normal distribution
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with fixed parameters: location = -0.1, scale = 0.3 and skew = 5.0.7 After
this procedure the output will be referred to as our dataset. We analyze
this dataset using an MCMC and the astroABC sampler and fit for two
cosmological parameters: Ωm and w0.

Adding this non-Gaussian random noise means that the final dataset has
a non-Gaussian distribution at every redshift. In realistic datasets there may
be several systematics which will have a similar effect e.g zero-point offset
systematics in supernova studies. We assume that an analytic expression
for the distribution of the final dataset is not available to us but can be
forward modeled using a simulation. For this simple example we assume a
Gaussian distribution for the data in our MCMC sampler. On the other
hand using astroABC we are able to run the simulation at every proposed
point in parameter space during sampling and generate a mock dataset
which includes possible sources of noise. During sampling we assume a
flat cosmological model and wide Normal priors on Ωm ∼ N (0.3, 0.5) and
w0 ∼ N (−1, 0.5) and no prior information from other probes.

5.2. MCMC results

For our MCMC analysis we assume the following standard Likelihood:

L(µdata|µmodel(z,Ωm, w0)) ∝ e
−
∑
i

(
µidata−µmodel(z

i,Ωm,w0)

2σi

)2

, (4)

where µidata is the distance modulus for an individual supernova in the data,
with associated error σi; and in a flat universe,

µmodel(z
i,Ωm, w0) ∝ 5log10

c(1 + z)

h0

∫ zi

0
dz′

1

E(z′)
(5)

where

E(z) =

√
Ωm(1 + z)3 + (1− Ωm)e3

∫ z
0 dln(1+z′)[1+w(z′)] (6)

The results of the estimated posterior distribution for Ωm and w0 from
the MCMC sampler are shown in Fig. 1. These results are from 28 chains
each with 10,000 sample points. The ‘true’ parameters values used to gener-
ate the mock data are shown as a red star. The 1 and 2-σ contours from the
posterior distribution found using MCMC are shown as blue shaded regions.
The marginalized best fit values are Ωm = 0.17±0.11 and w0 = −1.26±0.55

7http://scipy.github.io/devdocs/generated/scipy.stats.skewnorm.html
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Figure 1: Parameter constraints on Ωm and w0 from the MCMC sampler. The ‘true’
parameter values used to generate the mock data are shown as a red star. The 1 and 2-σ
contours from the posterior distribution found using MCMC are shown as blue shaded
regions.
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which are quite discrepant with the ‘true’ values of Ωm = 0.3 and w0 = −1.0.
It is clear that the simple Gaussian Likelihood assumption in this case, which
neglects the effects of systematics yields biased cosmological constraints.

5.3. ABC results

As this is an example for demonstration purposes we are assuming that
our noisy data can be simulated accurately and easily, but that an analytical
expression for the likelihood is not available to us.

Using a forward model simulation we can account for non-Gaussian un-
certainties in the data without explicitly knowing the likelihood. Our simu-
lation in this case uses the model given in Eq. 5 to draw Gaussian random
variables to which we add non-Gaussian noise from a skew normal distribu-
tion. Note the use of exactly the same model here in the two methods is to
highlight the distinction between choice of model, and choice of Likelihood
in inference techniques. Even though the physical model can be the same
in both, an incorrect Likelihood assumption can bias results. At every iter-
ation we simulate a set of supernovae at every point in a two dimensional
parameter space ({Ωm, w0}). With ABC it is also possible to parametrize
the source of non-Gaussian noise in the simulation and fit for e.g. the hyper
parameters of the skew normal distribution also. This simulated output is
then compared with the dataset using a weighted Euclidean metric and an
iteratively adaptive threshold. We use 100 particles in the astroABC sam-
pler and run until the error on the 1σ contour for the parameters is ∼ 5%.
There choice for the number of particles is based on trial and error runs to
determine an optimum way to sample a multi dimensional parameter space
efficiently. Fig. 2 shows the progress of the ABC particles as the iteration
number increases (and the tolerance level decreases). In each panel the ‘true’
value of the parameters is shown as a red star. It is clear that at iteration 0
the particles are well dispersed throughout the prior range. As the tolerance
threshold level decreases the particles converge towards the ‘true’ values.

In Fig. 3 we show the 1 and 2-σ contours from the joint posterior dis-
tribution of Ωm and w0 found using astroABC. The marginalized best fit
values are Ωm = 0.36± 0.12 and w0 = −1.22± 0.4 which recover the ‘true’
underlying parameters used to create the dataset within the 1-σ errors. Us-
ing a forward simulation model, which can naturally incorporate systematic
effects at every point in parameter space, avoids explicit calculation of the
Likelihood and any parameter bias which was seen in the MCMC method.
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Figure 2: The accepted w0 and Ωm parameter values at several iterations of the astroABC
sampler. Each of the 100 particles is represented as a green dot. The ‘true’ value of the
parameters is shown as a red star in each panel.
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Figure 3: Parameter constraints on Ωm and w0 from astroABC. The ‘true’ parameter
values used to generate the mock data are shown as a red star. The 1 and 2-σ contours
from the posterior distribution found using the astroABC sampler are shown as green
shaded regions.
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6. Discussion

We have described astroABC, a new open source Python implementa-
tion of an ABC SMC sampler. The ABC sampler can be used in parameter
inference by simulating observations from posterior distributions when like-
lihoods are difficult or impossible to compute. Problems such as this arise
frequently in cosmological applications, where it is often the case that a
physical model for the data can be simulated rapidly, and includes system-
atic uncertainties, but is sufficiently complicated that explicit formulae for
the Likelihood are not known. The demand for alternative sampling meth-
ods in astronomy is increasing given the large correlated datasets we expect
to analyze from future surveys. Current methods increasingly rely on sim-
ulations for error estimation and ABC sampling is a natural extension of
this approach with the advantage that the Likelihood is not explicitly cal-
culated. astroABC was designed to be as user friendly as possible while also
accommodating the computational demands of simulating future datasets.
We hope that astroABC will be a useful resource for the astrophysics com-
munity with its facility for massive parallelization using MPI, as well as
Python multiprocessing, and innovative factors such as a varied choice of
covariance and kernel estimation, tolerance levels and priors.
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